Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge
نویسندگان
چکیده
The effects of organic loading rates (OLRs) on fermentative productions of hydrogen and ethanol were investigated in a continuous stirred tank reactor (CSTR) with attached sludge using molasses as substrate. The CSTR reactor with attached sludge was operated under different OLRs, ranging from 8 to 24 kg/m(3)·d. The H(2) and ethanol production rate essentially increased with increasing OLR. The highest H(2) production rate (10.74 mmol/h·L) and ethanol production rate (11.72 mmol/h·L) were obtained both operating at OLR = 24 kg/m(3)·d. Linear regression results show that ethanol production rate (y) and H(2) production rate (x) were proportionately correlated and can be expressed as y = 1.5365x - 5.054 (r(2) = 0.9751). The best energy generation rate was 19.08 kJ/h·L, which occurred at OLR = 24 kg/m(3)·d. In addition, the hydrogen yield was affected by the presence of ethanol and acetic acid in the liquid phase, and the maximum hydrogen production rate occurred while the ratio of ethanol to acetic acid was close to 1.
منابع مشابه
Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste
This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 ◦C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS), ...
متن کاملBiohydrogen Production of Vinasse Derived from Bioethanol Processing Industry Wastewater: A Review
Background: Increasing global consumption of fossil fuels leads to greenhouse gas emissions, climate change and environmental pollution. Agricultural, animal and food industrial waste is one of the main sources of pollution. The bioethanol industry is one of 17 highly polluted industries. In the process of producing bioethanol, vinasse is produced, and so far 22.4 Giga litter of vinasse has bee...
متن کاملDark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis
Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...
متن کاملBiohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor
Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process f...
متن کاملBioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011